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1. 

The aim of this article is to provide the explicit dynamic stiffness matrix for the
transverse oscillation of an axially moving string under a constant tension. This
model has important practical applications in the transport of magnetic tapes,
paper tapes, textile fibres, aerial haulage cables, power transmission chains, and
bandsaw blades.

The dynamic stiffness method is an exact method for the dynamic analysis of
various structures. It allows one to model an infinite number of natural modes with
a small number of unknowns. It uses the finite element assembly procedure to
formulate the system equations of complicated structures, but it does not introduce
the discretisation errors associated with finite elements. The dynamic stiffness
matrix of a structure is formulated using the exact solutions and hence requires
intensive algebraic manipulations. Explicit dynamic stiffness matrices for a range
of structural elements have been published, for instance, uniform thin beams [1],
Timoshenko beams [2], non-uniform beams [3], etc.

2. 

The dynamic stiffness method provides a powerful method for solving forced
vibration problems and the explicit dynamic stiffness matrix of the moving string
allows it to be assembled into a system which may consist of other structural
components such as springs, masses, dampers, beams, and plates. Although the
solution for the transverse oscillation of an axially moving string under a constant
tension has existed for decades [4], and more recently closed-form solutions have
been presented [5, 6], the explicit dynamic stiffness matrix of this system has not
been published.
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The equation of motion for an axially moving string under a constant tension
is

12v
1t2 +2c

1

1t
1v
1x

−(a2 − c2)
12v
1x2 =0, (1)

where c is the axial speed of the string, a is the wave speed of the stationary string,
a2 =R/(rA), R is the tension, r is the density, A is cross-sectional area, v is
transverse displacement, x is the longitudinal co-ordinate, and t is time.

The boundary conditions on x=0 and x=L are

v=0 or F= rA0−c
1v
1t

+(a2 − c2)
1v
1x1=0, (2)

where L is the length of the string, and F is the restoring force.
A separable solution, consisting of a spatial form which varies harmonically

with time, may be assumed, that is

v(x, t)=V(x) eivt. (3)

Substituting v into the equation of motion, gives

−v2V(x)+2ivc
dV(x)

dx
−(a2 − c2)

d2V(x)
dx2 =0. (4)

For the case when the transport velocity, c, is less than wave velocity, a,
equation (4) is satisfied by solutions of the form [6]

V(x)=B1 eivx/(a− c) +B2 e−ivx/(a+ c). (5)

It should be noted that this solution is not valid when the transport velocity, c,
is equal or greater than the wave velocity, a.

Equation (5), which was given in reference [6], will now be used in deriving the
dynamic stiffness matrix. Taking the applied end forces as positive in the positive
v direction, the end conditions are given by

P1 eivt = rA0ivcV−(a2 − c2)
dV
dx1 eivt,

P2 eivt = rA0−ivcV+(a2 − c2)
dV
dx1 eivt. (6)
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Letting x=0 at end 1 and x=L at end 2, substituting equation (5) into equation (6) and rearranging into matrix
form gives

P1

= rA (a2 − c2)

−iv
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+ ivc
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{P}=[D]{B}. (7)
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The unknown coefficients Bi can be expressed in terms of the maximum end
deflections, thus

6V1

V27=$ 1
eivL/(a− c)

1
e−ivL/(a+ c)%6B1

B27,
{V}=[C]{B}. (8)

Equations (7) and (8) can be combined to give the dynamic force–deflection
relationship

{P}=[D][C]−1{V}=[K]{V}, (9)

where [K] is the dynamic stiffness matrix. After performing the algebraic
manipulation, the dynamic stiffness matrix for the moving string is given explicitly
as

[K]=
ivrAa

d $−eivL/(a− c) − e−ivL/(a+ c)

2e2ivcL/(a2 − c2)

2
− eivL/(a− c) − e−ivL/(a+ c)%, (10)

where

d=−eivL/(a− c) + e−ivL/(a+ c) . (11)

The exponential form of the dynamic stiffness can also be conveniently
expressed in term of trigonometric functions, hence

G
G
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K

k
G
G

G

L

l
[K]=vrAa

cot
vLa

a2 − c2

−csc
vLa

a2 − c2 eivLc/(a2 − c2)

−csc
vLa

a2 − c2 e−ivLc/(a2 − c2)

cot
vLa

a2 − c2

. (12)

When c=0, the dynamic stiffness matrix reduces to that of a stationary tensioned
string.

For a general system, comprised for example of moving strings, masses, springs
and dampers, the component dynamic stiffness matrices may be assembled to give
a global dynamic stiffness matrix, [Kg ]. The natural frequencies of the global
system may then be found by solving for the values of v which satisfy the equation.

=[Kg ]==0. (13)

Figure 1. A moving string in contact with a stationary load system.
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3.  

Chen [7] provided, in graphical form, the approximate natural frequencies of
an axially moving string in contact with various stationary load systems, using
six-term eigenfunction expansion for the numerical solutions. He studied a
uniform string travelling between two fixed supports separated by a distance L.
The string was in contact with a stationary load system, consisting of a mass m,
a spring k, a damper d and a longitudinal friction force fu , at a fixed distance X0

from the left support (see Figure 1). The string was subjected to a tension R to
the right of x=X0, and R− fu to the left. He presented his numerical results in
the following non-dimensional parameters [7]:

x*=
x
L

, v*=
v
L

, t*= t
a
L

, v*=v
L
a

, l= iv*, n=
c
a

, j=
X0

L
,

k*= k
L

rAa2 , m*=
m

rAL
, d*=

d
rAa

, f*u =
fu

R
,

where a=zR/(rA) is the wave speed of the string, and l is the non-dimensional
eigenvalue.

The dynamic stiffness method presented in this article will now be used to
produce exact solutions for the following six cases of Chen’s non-dimensional
parameters: (a) no intermediate support; (b) k*=20 at j=0·3; (c) k*=1000 at
j=0·3; (d) k*=3 and m*=0·2 at j=0·3; (e) d*=1 at j=0·3; and (f) k*=20
and f*u =0·75 at j=0·5.

T 1

First three eigenvalues of a moving string, in contact with various load systems, and
at various axial speeds, obtained using the dynamic stiffness method

l
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

n Case (a) Case (b) Case (c) Case (d) Case (e) Case (f)

0·0 3·1416i 4·2097i 4·4816i 3·2971i −0·6998+3·2991i 3·0655i
6·2832i 8·0633i 8·9629i 5·7712i −1·0218+6·1452i 5·6221i
9·4248i 9·6569i 10·4374i 9·3042i −0·0959+9·4131i 6·2832i

0·2 3·0159i 4·0505i 4·3026i 3·1932i −0·6718+3·1671i 2·5862i
6·0319i 7·7733i 8·6049i 5·5783i −0·9809+5·8993i 5·0803i
9·0478i 9·2802i 10·0212i 8·9373i −0·0921+9·0365i 5·6279i

0·4 2·6390i 3·5687i 3·7654i 2·8718i −0·5878+2·7712i 1·1216i
5·2779i 6·8913i 7·5306i 4·9940i −0·8583+5·1619i 2·2423i
7·9168i 8·1494i 8·7720i 7·8351i −0·0806+7·9070i 3·3602i

0·6 2·0106i 2·7520i 2·8697i 2·2996i −0·4478+2·1114i
4·0212i 5·3738i 5·7393i 3·9938i −0·6539+3·9329i
6·0319i 6·2613i 6·6879i 5·9928i −0·0614+6·0244i

0·8 1·1310i 1·5761i 1·6148i 1·4033i −0·2519+1·1877i
2·2619i 3·1241i 3·2297i 2·4967i −0·3678+2·2123i
3·3929i 3·5933i 3·7654i 3·4000i −0·0345+3·3887i
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In dimensional form for cases (a)–(e), the string may be modelled as two elements, one with length X0, and one
with length L−X0, the spring, mass, and damper being added to the node at x=X0. The global dynamic stiffness
matrix, [Kg ] may be found by assembling the elemental matrices giving

vrAa1 cot
vLa1

a2
1 − c2 −vrAa1 csc

vLa1

a2
1 − c2 e−ivLc/(a2

1 − c2) 0

G
G

G

G

G

K

k

G
G

G

G

G

L

l

[Kg ]= −vrAa1 csc
vLa1

a2
1 − c2 eivLc/(a2

1 − c2) K22 −vrAa2 csc
vLa2

a2
2 − c2 e−ivLc/(a2

2 − c2) ,

0 −vrAa2 csc
vLa2

a2
2 − c2 eivLc/(a2

2 − c2) vrAa2 cot
vLa2

a2
2 − c2

(14)
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where

K22 =vrAa1 cot
vLa1

a2
1 − c2 +vrAa2 cot

vLa2

a2
2 − c2 + k+ ivd−v2m,

and a1 =z(R− fu )/(rA) is the wave speed of element 1, and a2 = a=zR/(rA)
is the wave speed of element 2.

Taking into account the fixed end conditions, that is zero displacement at x=0
and X=L, the system force–deflection relationship reduces equation (14) to

[Kg ]=vrA0a1 cot
vX0a1

a2
1 − c2 + a2 cot

v(L−X0)a2

a2
2 − c2 1+ k+ ivd−v2m, (15)

which may be expressed in the above non-dimensional parameters as

[K*g ]=v*0z1− f*u cot
v*jz1− f*u
(1− f*u )− n2 + cot

v*(1− j)
1− n2 1

+ k*+ iv*d*−v*2m*, (16)

For case (f), it is necessary to use four elements to represent the string because
there is a node of the second mode of vibration at X0 =L/2. When assembled and
reduced in the manner described above, this leads to a 3×3 global dynamic
stiffness matrix which was used to solve for natural frequencies. It should be noted

T 2

First three eigenvalues of a moving string, in contact with various load systems, and
at various axial speeds, digitized from reference [7]

l
ZXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXV

n Case (a) Case (b) Case (c) Case (d) Case (e) Case (f)

0·0 3·1i 4·2i 4·5i 3·3i −0·70+3·3i 3·1i
6·3i 5·8i −1·00+6·1i 5·7i

6·3i

0·2 3·0i 4·1i 4·3i 3·2i −0·70+3·2i 2·6i
6·0i 5·6i −0·95+5·9i 5·2i

5·6i

0·4 2·6i 3·6i 3·8i 2·9i −0·60+2·8i 1·1i
5·3i 7·0i 5·0i −0·85+5·1i 2·2i

3·4i

0·6 2·0i 2·8i 2·9i 2·3i −0·45+2·1i
4·0i 5·5i 5·8i 4·0i −0·65+3·9i
6·0i 6·3i 6·8i 6·0i −0·05+6·0i

0·8 1·1i 1·6i 1·6i 1·4i −0·25+1·2i
2·3i 3·1i 3·2i 2·5i −0·35+2·2i
3·4i 3·6i 3·8i 3·4i −0·05+3·4i
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that for this case, due to the friction reducing the tension in the first span to
one-quarter of that in the second span, the transport velocity reaches a critical
value in the first span when c= a1 corresponding to c= a2/2 (or n=0·5). Natural
frequencies beyond the critical speed of n=0·5 were not calculated because the
solutions given in equation (5) for the sub-critical cases are not valid.

Table 1 shows the first three eigenvalues of the six cases for various axial
velocities, n. These results may be used to check the accuracy of the graphical
results presented by Chen [7]. Table 2 presents a selection of eigenvalues digitized
by the present authors from the graphs in reference [7]. It may be seen that his
results are in agreement with the exact results.

Chen in his Figure 7 also presented a set of results for conditions above the
critical speed. But in view of the fact that his model is also a linear model, the
present authors believe that those results are invalid.

4. 

The explicit dynamic stiffness of an axially moving string under constant tension
has been given. The exact eigenvalues of an axially moving string in contact with
a stationary load system have been calculated and compared with the published
approximate results in reference [7].
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